638-65-3Relevant articles and documents
Fatty Amidine as Copper Corrosion Inhibitor
Apriliyanto, Yusuf Bramastya,Darmawan, Noviyan,Dawolo, Januari,Mas'Ud, Zainal Alim
, (2020/11/26)
The development of green and sustainable corrosion inhibitors for copper in a corrosive marine environment is highly desired. Herein, we studied the fatty acid-based amidine as the new type of renewable corrosion inhibitor. Stearamidine salt was used as a model inhibitor, and it was synthesized through stearonitrile intermediate with an excellent isolated yield of 88%. We used electrochemical (potentiodynamic polarization) and morphological (scanning electron microscopy) measurements to assess the corrosion inhibition efficiency of stearamidine in 3.0 wt.% NaCl at 300 K. We show that, in such a condition, the optimum inhibition efficiency of 96% was achieved using only 0.2 mM stearamidine. The results suggested the fatty amidine is a promising corrosion inhibitor for copper that is suitable in the saltwater ecosystem. The thermodynamic parameters of the interaction between the stearamidine and the copper surface were determined, and the result suggests that the adsorption process occurred accordingly with the Langmuir adsorption isotherm and involved both physisorption and chemisorption.
Method for continuous preparation of nitriles by amides (by machine translation)
-
Paragraph 0033-0054; 0061-0066, (2020/12/15)
The method comprises the following steps: preparing a lead salt supported by a molecular sieve by a lead salt and a molecular sieve through an impregnation method; and filling a molecular sieve-loaded lead catalyst into a fixed bed reactor. The amide or amide solution is sent into a fixed bed reactor from the top of the fixed bed to be subjected to catalytic dehydration, and the obtained reaction product is led out from the bottom of the fixed bed. The reaction product is separated to obtain the crude product of the nitrile corresponding to the amide. A fixed bed continuous production process is adopted, the reaction process is simple, the production efficiency is high, the product post-treatment is simple, and industrial production is easy to realize. (by machine translation)
Synthesis, characterization, catalytic and biological application of half-sandwich ruthenium complexes bearing hemilabile (κ2-: C, S)-thioether-functionalised NHC ligands
Achard, Thierry,Bellemin-Laponnaz, Stéphane,Chen, Weiguang,Egly, Julien,Maisse-Francois, Aline,Poblador-Bahamonde, Amalia I.
supporting information, p. 3243 - 3252 (2020/03/19)
A series of cationic Ru(ii)(η6-p-cymene) complexes with thioether-functionalised N-heterocyclic carbene ligands have been prepared and fully characterized. Steric and electronic influence of the R thioether substituent on the coordination of the sulfur atom was investigated. The molecular structure of three of them has been determined by means of X-ray diffractrometry and confirmed the bidentate (κ2-C,S) coordination mode of the ligand. Interestingly, only a single diastereomer, as an enantiomeric couple, was observed in the solid state for complexes 1c, 1i and 1j. DFT calculations established a low energy inversion barrier between the two diastereomers through a sulfur pyramidal inversion pathway with R donating group while a dissociative/associative mechanism is more likely with R substituents that contain electron withdrawing group, thus suggesting that the only species observed by the 1H-NMR correspond to an average resonance position of a fluxional mixtures of isomers. All these complexes were found to catalyse the oxydant-free double dehydrogenation of primary amine into nitrile. Ru complex bearing NHC-functionalised S-tBu group was further investigated in a wide range of amines and was found more selective for alkyl amine substrates than for benzylamine derivatives. Finally, preliminary results of the biological effects on various human cancer cells of four selected Ru complexes are reported.
Dehydrogenation of Primary Alkyl Azides to Nitriles Catalyzed by Pincer Iridium/Ruthenium Complexes
Gan, Lan,Jia, Xiangqing,Fang, Huaquan,Liu, Guixia,Huang, Zheng
, p. 3661 - 3665 (2020/06/02)
Pincer metal complexes exhibit superior catalytic activity in the dehydrogenation of plain alkanes, but find limited application in the dehydrogenation of functionalized organic molecules. Starting from easily accessible primary alkyl azides, here we report an efficient dehydrogenation of azides to nitriles using pincer iridium or ruthenium complexes as the catalysts. This method offers a route to cyanide-free preparation of nitriles without carbon chain elongation and without the use of strong oxidants. Both benzyl and linear aliphatic azides can be dehydrogenated with tert-butylethylene as the hydrogen acceptor to afford nitriles in moderate to high yields. Various functional groups can be tolerated, and the H?C?C?H bond dehydrogenation does not occur for linear alkyl azide substrates. Furthermore, the pincer Ir catalytic system was found to catalyze the direct azide dehydrogenation without the use of a sacrificial hydrogen acceptor.
Easy Ruthenium-Catalysed Oxidation of Primary Amines to Nitriles under Oxidant-Free Conditions
Achard, Thierry,Egly, Julien,Sigrist, Michel,Maisse-Fran?ois, Aline,Bellemin-Laponnaz, Stéphane
supporting information, p. 13271 - 13274 (2019/10/21)
A dehydrogenation of primary amine to give the corresponding nitrile under oxidant- and base-free conditions catalysed by simple [Ru(p-cym)Cl2]2 with no extra ligand is reported. The system is highly selective for alkyl amines, whereas benzylamine derivatives gave the nitrile product together with the imine in a ratio ranging from 14:1 to 4:1 depending on the substrate. Preliminary mechanistic investigations have been performed to identify the key factors that govern the selectivity.
Ru@UiO-66(Ce) catalyzed acceptorless dehydrogenation of primary amines to nitriles: The roles of Lewis acid-base pairs in the reaction
Lu, Guo-Ping,Li, Xinxin,Zhong, Lixiang,Li, Shuzhou,Chen, Fei
supporting information, p. 5386 - 5393 (2019/10/11)
UiO-66(Ce)-encapsulated ruthenium nanoparticles (Ru@UiO-66(Ce)) was designed and used for dehydrogenation of primary amines to nitriles in water without any hydrogen acceptors and additives. Introduction of metal Ru to UiO-66(Ce) contributes to the formation of Lewis acid-base pairs on the catalyst owing to the metal-support interaction, acting as active sites for activation of amines and transfer of hydrogen. Ab initio calculation results further confirm the roles of Lewis acid-base pairs in the reaction.
Highly Active and Selective Ru-PNH Catalyst in Aerobic Oxidation of Benzyl Amines
Aman, Michal,Tremmel, Jakub,Dostál, Libor,Erben, Milan,Tydlitát, Ji?í,Jansa, Josef,Jambor, Roman
, p. 4624 - 4630 (2019/08/16)
Set of [Ru(η6-cymene)(R)XCl] (R=L1SnCl, L1GeCl L2PPh2, X=Cl or SnCl3, L1=[2-(CH2NEt2)-4,6-(tBu)2C6H2]?, L2=2,6-iPr2-C6H3-NH?) catalysts was tested in aerobic oxidations of primary amines. The activity of studied catalysts depends on the charge of the Ru atom that has been influenced either by donating ligands R or by character of X. Typical Ru/P catalyst [Ru(η6-cymene)(L2PPh2)Cl2] (3) with least negative charge on the Ru atom has been observed as the most effective. The design of the phosphine ligand L2 containing amino-phosphine PNH moiety provided efficient anchoring of complex 3 to silica gel via hydrogen bonding of the PNH functional group to SiO2 to give heterogeneous catalyst 3-silica. This complex has been also efficiently tested in aerobic oxidation as recyclable catalyst with cumulative TON up to 6930.
Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis
Jamil, Md. A. R.,Siddiki, S. M. A. Hakim,Touchy, Abeda Sultana,Rashed, Md. Nurnobi,Poly, Sharmin Sultana,Jing, Yuan,Ting, Kah Wei,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-ichi
, p. 3115 - 3125 (2019/04/26)
The use of triglycerides as an important class of biomass is an effective strategy to realize a more sustainable society. Herein, three heterogeneous catalytic methods are reported for the selective one-pot transformation of triglycerides into value-added chemicals: i) the reductive amination of triglycerides into fatty amines with aqueous NH3 under H2 promoted by ZrO2-supported Pt clusters; ii) the amidation of triglycerides under gaseous NH3 catalyzed by high-silica H-beta (Hβ) zeolite at 180 °C; iii) the Hβ-promoted synthesis of nitriles from triglycerides and gaseous NH3 at 220 °C. These methods are widely applicable to the transformation of various triglycerides (C4–C18 skeletons) into the corresponding amines, amides, and nitriles.
Corresponding amine nitrile and method of manufacturing thereof
-
, (2018/05/07)
The invention relates to a manufacturing method of nitrile. Compared with the prior art, the manufacturing method has the characteristics of significantly reduced using amount of an ammonia source, low environmental pressure, low energy consumption, low production cost, high purity and yield of a nitrile product and the like, and nitrile with a more complex structure can be obtained. The invention also relates to a method for manufacturing corresponding amine from nitrile.
Graphene oxide as a metal-free catalyst for oxidation of primary amines to nitriles by hypochlorite
Primo, Ana,Puche, Marta,Pavel, Octavian D.,Cojocaru, Bogdan,Tirsoaga, Alina,Parvulescu, Vasile,García, Hermenegildo
, p. 1839 - 1842 (2016/02/12)
Graphene oxide catalyzes oxidation by NaClO of primary benzyl and aliphatic amines to a product distribution comprising nitriles and imines. Nitriles are the sole product for long chain aliphatic amines. Spectroscopic characterization suggests that percarboxylic and perlactone groups could be the active sites of the process.