播放中国国产国语纯一级黄片免费看, 大鸡吧快来啊阿啊阿啊黄片在线播放, 中文精品日韩网站在线观看视频免费, 别揉我奶头~嗯~啊~一区二区三区,AV无码播放一级毛片免费古装,亚洲春色一区二区三区,91大神极品,美国一级大黄一片免费下载,午夜爽爽爽男女免费观看软件

Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-BROMOBENZENEDIAZONIUM TETRAFLUOROBORATE is a light beige to pink-beige powder that is an organic compound with the chemical formula C6H3BrN2(BF4). It is known for its electrochemical properties and is commonly used in the modification of surfaces and the preparation of various materials.

673-40-5

Post Buying Request

673-40-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

673-40-5 Usage

Uses

Used in Electrochemical Applications:
4-BROMOBENZENEDIAZONIUM TETRAFLUOROBORATE is used as a reagent for the electrochemical reduction of carbon felt, leading to the derivatization of modified carbon surfaces such as glassy carbon or carbon felt. This process is essential for the development of modified electrodes with enhanced properties and performance.
Used in Surface Modification of Au(111) Electrode:
In the field of surface science, 4-BROMOBENZENEDIAZONIUM TETRAFLUOROBORATE is used as a precursor in the preparation of surface-modified Au(111) electrodes. This modification is crucial for the development of advanced electrochemical sensors and devices with improved sensitivity and selectivity.
Used in the Synthesis of 1-(4'-BROMOPHENYL)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-HEPTADECAFLUORODEC-1-ENE:
4-BROMOBENZENEDIAZONIUM TETRAFLUOROBORATE is also utilized as a key intermediate in the synthesis of 1-(4'-bromophenyl)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodec-1-ene, a complex organic molecule with potential applications in various industries, including pharmaceuticals and materials science.

Purification Methods

Wash the salt with Et2O until the wash is colourless and allow it to dry by blowing N2 over it. Store it at 0-4o in the dark. [Schiemann & Pillarsky Chem Ber 64 1340 1931, Beilstein 16 III 517.]

Check Digit Verification of cas no

The CAS Registry Mumber 673-40-5 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,7 and 3 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 673-40:
(5*6)+(4*7)+(3*3)+(2*4)+(1*0)=75
75 % 10 = 5
So 673-40-5 is a valid CAS Registry Number.
InChI:InChI=1/C6H4BrN2.B.4FH/c7-5-1-3-6(9-8)4-2-5;;;;;/h1-4H;;4*1H/q+1;+3;;;;/p-4

673-40-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B25670)  4-Bromobenzenediazonium tetrafluoroborate, 96%   

  • 673-40-5

  • 5g

  • 557.0CNY

  • Detail
  • Alfa Aesar

  • (B25670)  4-Bromobenzenediazonium tetrafluoroborate, 96%   

  • 673-40-5

  • 25g

  • 2425.0CNY

  • Detail
  • Aldrich

  • (280895)  4-Bromobenzenediazoniumtetrafluoroborate  96%

  • 673-40-5

  • 280895-5G

  • 606.06CNY

  • Detail

673-40-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Bromobenzenediazonium tetrafluoroborate

1.2 Other means of identification

Product number -
Other names 4-bromobenzenediazonium,tetrafluoroborate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:673-40-5 SDS

673-40-5Relevant articles and documents

Metal-Free Visible-Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism

Louvel, Dan,Chelagha, Aida,Rouillon, Jean,Payard, Pierre-Adrien,Khrouz, Lhoussain,Monnereau, Cyrille,Tlili, Anis

supporting information, p. 8704 - 8708 (2021/05/17)

The first metal-free procedure for the synthesis of arylsulfonyl fluorides is reported. Under organo-photoredox conditions, aryl diazonium salts react with a readily available SO2 source (DABSO) to afford the desired product through simple nucleophilic fluorination. The reaction tolerates the presence of both electron-rich and -poor aryls and demonstrated a broad functional group tolerance. To shed the light on the reaction mechanism, several experimental techniques were combined, including fluorescence, NMR, and EPR spectroscopy as well as DFT calculations.

Azoacetylenes for the Synthesis of Arylazotriazole Photoswitches

Anderl, Felix,Balkenhohl, Moritz,Carreira, Erick M.,Fink, Moritz,Pfaff, Patrick

supporting information, p. 14495 - 14501 (2021/09/18)

We report a modular approach toward novel arylazotriazole photoswitches and their photophysical characterization. Addition of lithiated TIPS-acetylene to aryldiazonium tetrafluoroborate salts gives a wide range of azoacetylenes, constituting an underexplored class of stable intermediates.In situdesilylation transiently leads to terminal arylazoacetylenes that undergo copper-catalyzed cycloadditions (CuAAC) with a diverse collection of organoazides. These include complex molecules derived from natural products or drugs, such as colchicine, taxol, tamiflu, and arachidonic acid. The arylazotriazoles display near-quantitative photoisomerization and long thermalZ-half-lives. Using the method, we introduce for the first time the design and synthesis of a diacetylene platform. It permits implementation of consecutive and diversity-oriented approaches linking two different conjugants to independently addressable acetylenes within a common photoswitchable azotriazole. This is showcased in the synthesis of several photoswitchable conjugates, with potential applications as photoPROTACs and biotin conjugates.

Alternative method for the synthesis of triazenes from aryl diazonium salts

Abrams

supporting information, (2021/05/10)

An alternative mild method for access to 1-aryl-3,3-dimethyl alkyl triazenes is described. This protocol employs the dropwise addition of a methanolic solution of a carboxylate (RCO2M) or carbonate (CO32?) to a gently heated DMF solution containing an aryl diazonium salt (ArN2+), that had been previously isolated. Presumably homolysis of the weak N–O bond of diazo ether adducts formed in this operation initiates radical pathways that lead to the generation of triazene product. DMF serves as not only a one-electron donor to the diazonium salts employed in this process, but also as a source of dimethylamine radicals that act as a nucleophilic coupling partner. The reaction provides modest yields (ca. 20–40%) across an array of aryl diazonium salts that contain various substitution. Furthermore this unique approach to triazenes contrasts with traditional methods that employ dimethyl amine in reagent form which directly couples with diazonium salts. Seemingly, only one other example employing somewhat similar reaction conditions to this current investigation en route to triazenes has been reported, albeit with lower yields and for one representative example furnished as a side-product. The current work here improves upon the efficiency of this reported result, and further expands the reaction scope.

Comparison of the Thermal Stabilities of Diazonium Salts and Their Corresponding Triazenes

Schotten, Christiane,Leprevost, Samy K.,Yong, Low Ming,Hughes, Colan E.,Harris, Kenneth D. M.,Browne, Duncan L.

supporting information, p. 2336 - 2341 (2020/06/05)

A range of diazonium salts and their corresponding triazenes have been prepared in order to directly compare their relative thermal stabilities (via initial decomposition temperature) from differential scanning calorimetry (DSC) data. A structure-stability relationship has been explored to investigate trends in stability, depending on the aromatic substituent and the structure of the secondary amine component of the diazonium salts and triazenes. All of the triazenes investigated show significantly greater stability (many are stable above 200 °C) compared with the corresponding diazonium salts, which show varying stabilities.

Copper-mediated tandem ring-opening/cyclization reactions of cyclopropanols with aryldiazonium salts: Synthesis of: N -arylpyrazoles

Liu, Jidan,Xu, Erjie,Jiang, Jinyuan,Huang, Zeng,Zheng, Liyao,Liu, Zhao-Qing

supporting information, p. 2202 - 2205 (2020/02/26)

A general method for the synthesis of structurally diverse N-arylpyrazoles from readily available cyclopropanols and aryldiazonium salts is disclosed. The reaction was conducted at room temperature within minutes with a broad substrate scope and excellent regioselectivity.

RhIII-Catalyzed Synthesis of Highly Substituted 2-Pyridones using Fluorinated Diazomalonate

Das, Debapratim,Sahoo, Gopal,Biswas, Aniruddha,Samanta, Rajarshi

supporting information, p. 360 - 364 (2020/01/25)

A RhIII-catalyzed strategy was developed for the rapid construction of highly substituted 2-pyridone scaffolds using α,β-unsaturated oximes and fluorinated diazomalonate. The reaction proceeds through direct, site-selective alkylation based on migratory insertion and subsequent cyclocondensation. A wide substrate scope with different functional groups was explored. The requirement of fluorinated diazomalonate was explored for this transformation. The developed methodology was further extended with the synthesis of the bioactive compound.

Carbazole based Electron Donor Acceptor (EDA) catalysis for the synthesis of biaryl and aryl-heteroaryl compounds

Annes, Sesuraj Babiola,Ramesh, Subburethinam,Saravanan, Subramanian,Saritha, Rajendhiran

supporting information, p. 2510 - 2515 (2020/04/15)

A highly regioselective, carbazole based Electron Donor Acceptor (EDA) catalyzed synthesis of biaryl and aryl-heteroaryl compounds is described. Various indole and carbazole derivatives were screened for the Homolytic Aromatic Substitution (HAS) reaction. Tetrahydrocarbazole (THC) was very efficient for the HAS transformation and proceeded via a complex formation between diazonium salt and electron rich tetrahydrocarbazole. The UV-Vis spectroscopy technique has been used to confirm the complex formation. The in situ generated EDA complex even in a catalytic amount is found to be efficient for the Single Electron Transfer (SET) process without any photoactivation. Biaryl compounds, 2-phenylfuran, 2-phenylthiophene, and 2-phenylpyrrole and bioactive compounds such as dantrolene and canagliflozin have been synthesized in moderate to excellent yields.

Dual palladium-photoredox catalyzed chemoselective C-H arylation of phenylureas

Babu, Sakamuri Sarath,Shahid,Gopinath, Purushothaman

supporting information, p. 5985 - 5988 (2020/06/04)

A highly chemoselective C-H arylation of phenylureas has been accomplished using dual palladium-photoredox catalysis at room temperature without any additives, base or external oxidants. Regioselective C-H arylation ofN,N'-diaryl substituted unsymmetrical phenylureas has also been accomplished by a careful choice of aryl groups.

Visible-Light-Mediated Ru-Catalyzed Synthesis of 3-(Arylsulfonyl)but-3-enals via Coupling of α-Allenols with Diazonium Salts and Sulfur Dioxide

Herrera, Fernando,Luna, Amparo,Almendros, Pedro

supporting information, p. 9490 - 9494 (2020/12/21)

The first coupling of α-allenols, sulfur dioxide, and arenediazonium salts is presented. The three-component reaction which is promoted by visible light can be easily accomplished using DABSO as a sulfur dioxide surrogate in the presence of a photoredox catalyst. In this manner, a broad range of electron-rich and electron-deficient aryl substituents are well accommodated in the sulfonylation-rearrangement cascade to afford the 2,2-disubstituted 3-(arylsulfonyl)but-3-enals in reasonable yields. Based on control experiments, a radical mechanism which does imply 1,2-aryl migration has been proposed.

Phenalenyl Based Aluminum Compound for Catalytic C-H Arylation of Arene and Heteroarenes at Room Temperature

Vardhanapu, Pavan K.,Ahmed, Jasimuddin,Jose, Anex,Shaw, Bikash Kumar,Sen, Tamal K.,Mathews, Amita A.,Mandal, Swadhin K.

, p. 289 - 299 (2019/01/10)

Main group metal based catalysis has been considered to be a cost-effective alternative way to the transition metal based catalysis, due to the high abundance of main group metals in the Earth's crust. Among the main group metals, aluminum is the most abundant (7-8%) in the Earth's crust, making the development of aluminum based catalysts very attractive. So far, aluminum based compounds have been popularly used as Lewis acids in a variety of organic reactions, but chemical transformation demanding a redox based process has never utilized an Al(III) complex as a catalyst. Herein, we tuned the redox noninnocence behavior of a phenalenyl ligand by coupling with Al(III) ion, which subsequently can store the electron upon reduction with K to carry out direct C-H arylation of heteroarenes/mesitylene at ambient temperature. A mechanistic investigation revealed that a three-electron reduced phenalenyl based triradical aluminum(III) complex plays the key role in such catalysis. The electronic structure of the catalytically active triradical species has been probed using EPR spectroscopy, magnetic susceptibility measurements, and electronic structure calculations using a DFT method.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 673-40-5